模块类似于一个封装库,从 Lua 5.1 开始,Lua 加入了标准的模块管理机制,可以把一些公用的代码放在一个文件里,以 API 接口的形式在其他地方调用,有利于代码的重用和降低代码耦合度。
Lua 的模块是由变量、函数等已知元素组成的 table,因此创建一个模块很简单,就是创建一个 table,然后把需要导出的常量、函数放入其中,最后返回这个 table 就行。以下为创建自定义模块 module.lua,文件代码格式如下:
-- 文件名为 module.lua
-- 定义一个名为 module 的模块
module = {}
-- 定义一个常量
module.constant = "这是一个常量"
-- 定义一个函数
function module.func1()
io.write("这是一个公有函数!\n")
end
local function func2()
print("这是一个私有函数!")
end
function module.func3()
func2()
end
return module
由上可知,模块的结构就是一个 table 的结构,因此可以像操作调用 table 里的元素那样来操作调用模块里的常量或函数。
上面的 func2 声明为程序块的局部变量,即表示一个私有函数,因此是不能从外部访问模块里的这个私有函数,必须通过模块里的公有函数来调用. require 函数
Lua 提供了一个名为 require 的函数用来加载模块。要加载一个模块,只需要简单地调用就可以了。例如:
require("<模块名>")
或者
require "<模块名>"
执行 require 后会返回一个由模块常量或函数组成的 table,并且还会定义一个包含该 table 的全局变量。
-- test_module.php 文件
-- module 模块为上文提到到 module.lua
require("module")
print(module.constant)
module.func3()
以上代码执行结果为:
这是一个常量
这是一个私有函数!
或者给加载的模块定义一个别名变量,方便调用:
-- test_module2.php 文件
-- module 模块为上文提到到 module.lua
-- 别名变量 m
local m = require("module")
print(m.constant)
m.func3()
以上代码执行结果为:
这是一个常量
这是一个私有函数!
对于自定义的模块,模块文件不是放在哪个文件目录都行,函数 require 有它自己的文件路径加载策略,它会尝试从 Lua 文件或 C 程序库中加载模块。
require 用于搜索 Lua 文件的路径是存放在全局变量 package.path 中,当 Lua 启动后,会以环境变量 LUA_PATH 的值来初始这个环境变量。如果没有找到该环境变量,则使用一个编译时定义的默认路径来初始化。
当然,如果没有 LUA_PATH 这个环境变量,也可以自定义设置,在当前用户根目录下打开 .profile 文件(没有则创建,打开 .bashrc 文件也可以),例如把 “~/lua/” 路径加入 LUA_PATH 环境变量里:
#LUA_PATH
export LUA_PATH="~/lua/?.lua;;"
文件路径以 “;” 号分隔,最后的 2 个 “;;” 表示新加的路径后面加上原来的默认路径。
接着,更新环境变量参数,使之立即生效。
source ~/.profile
这时假设 package.path 的值是:
/Users/dengjoe/lua/?.lua;./?.lua;/usr/local/share/lua/5.1/?.lua;/usr/local/share/lua/5.1/?/init.lua;/usr/local/lib/lua/5.1/?.lua;/usr/local/lib/lua/5.1/?/init.lua
那么调用 require(“module”) 时就会尝试打开以下文件目录去搜索目标。
/Users/dengjoe/lua/module.lua;
./module.lua
/usr/local/share/lua/5.1/module.lua
/usr/local/share/lua/5.1/module/init.lua
/usr/local/lib/lua/5.1/module.lua
/usr/local/lib/lua/5.1/module/init.lua
如果找过目标文件,则会调用 package.loadfile 来加载模块。否则,就会去找 C 程序库。
搜索的文件路径是从全局变量 package.cpath 获取,而这个变量则是通过环境变量 LUA_CPATH 来初始。
搜索的策略跟上面的一样,只不过现在换成搜索的是 so 或 dll 类型的文件。如果找得到,那么 require 就会通过 package.loadlib 来加载它。 C 包
Lua 和 C 是很容易结合的,使用 C 为 Lua 写包。
与 Lua 中写包不同,C 包在使用以前必须首先加载并连接,在大多数系统中最容易的实现方式是通过动态连接库机制。
Lua 在一个叫 loadlib 的函数内提供了所有的动态连接的功能。这个函数有两个参数:库的绝对路径和初始化函数。所以典型的调用的例子如下:
local path = "/usr/local/lua/lib/libluasocket.so"
local f = loadlib(path, "luaopen_socket")
loadlib 函数加载指定的库并且连接到 Lua,然而它并不打开库(也就是说没有调用初始化函数),反之他返回初始化函数作为 Lua 的一个函数,这样我们就可以直接在 Lua 中调用他。
如果加载动态库或者查找初始化函数时出错,loadlib 将返回 nil 和错误信息。我们可以修改前面一段代码,使其检测错误然后调用初始化函数:
local path = "/usr/local/lua/lib/libluasocket.so"
-- 或者 path = "C:\\windows\\luasocket.dll",这是 Window 平台下
local f = assert(loadlib(path, "luaopen_socket"))
f() -- 真正打开库
一般情况下我们期望二进制的发布库包含一个与前面代码段相似的 stub 文件,安装二进制库的时候可以随便放在某个目录,只需要修改 stub 文件对应二进制库的实际路径即可。
将 stub 文件所在的目录加入到 LUA_PATH,这样设定后就可以使用 require 函数加载 C 库了。
迭代器(iterator)是一种对象,它能够用来遍历标准模板库容器中的部分或全部元素,每个迭代器对象代表容器中的确定的地址
在 Lua 中迭代器是一种支持指针类型的结构,它可以遍历集合的每一个元素。
泛型 for 在自己内部保存迭代函数,实际上它保存三个值:迭代函数、状态常量、控制变量。
泛型 for 迭代器提供了集合的 key/value 对,语法格式如下:
for k, v in pairs(t) do
print(k, v)
end
上面代码中,k, v 为变量列表;pairs(t)为表达式列表。
查看以下实例:
array = {"Lua", "Tutorial"}
for key,value in ipairs(array)
do
print(key, value)
end
以上代码执行输出结果为:
1 Lua
2 Tutorial
以上实例中我们使用了 Lua 默认提供的迭代函数 ipairs。
下面我们看看范性 for 的执行过程:
在 Lua 中我们常常使用函数来描述迭代器,每次调用该函数就返回集合的下一个元素。Lua 的迭代器包含以下两种类型:
无状态的迭代器是指不保留任何状态的迭代器,因此在循环中我们可以利用无状态迭代器避免创建闭包花费额外的代价。
每一次迭代,迭代函数都是用两个变量(状态常量和控制变量)的值作为参数被调用,一个无状态的迭代器只利用这两个值可以获取下一个元素。
这种无状态迭代器的典型的简单的例子是 ipairs,他遍历数组的每一个元素。
以下实例我们使用了一个简单的函数来实现迭代器,实现 数字 n 的平方:
function square(iteratorMaxCount,currentNumber)
if currentNumber<iteratorMaxCount
then
currentNumber = currentNumber+1
return currentNumber, currentNumber*currentNumber
end
end
for i,n in square,3,0
do
print(i,n)
end
以上实例输出结果为:
1 1
2 4
3 9
迭代的状态包括被遍历的表(循环过程中不会改变的状态常量)和当前的索引下标(控制变量),ipairs 和迭代函数都很简单,我们在 Lua 中可以这样实现:
function iter (a, i)
i = i + 1
local v = a[i]
if v then
return i, v
end
end
function ipairs (a)
return iter, a, 0
end
当 Lua 调用 ipairs(a)开始循环时,他获取三个值:迭代函数 iter、状态常量 a、控制变量初始值 0;然后 Lua 调用 iter(a,0)返回 1,a[1](除非 a[1]=nil);第二次迭代调用 iter(a,1)返回 2,a[2]……直到第一个 nil 元素。 多状态的迭代器
很多情况下,迭代器需要保存多个状态信息而不是简单的状态常量和控制变量,最简单的方法是使用闭包,还有一种方法就是将所有的状态信息封装到 table 内,将 table 作为迭代器的状态常量,因为这种情况下可以将所有的信息存放在 table 内,所以迭代函数通常不需要第二个参数。
以下实例我们创建了自己的迭代器:
array = {"Lua", "Tutorial"}
function elementIterator (collection)
local index = 0
local count = #collection
-- 闭包函数
return function ()
index = index + 1
if index <= count
then
-- 返回迭代器的当前元素
return collection[index]
end
end
end
for element in elementIterator(array)
do
print(element)
end
以上实例输出结果为:
Lua
Tutorial
以上实例中我们可以看到,elementIterator 内使用了闭包函数,实现计算集合大小并输出各个元素。
数组,就是相同数据类型的元素按一定顺序排列的集合,可以是一维数组和多维数组。
Lua 数组的索引键值可以使用整数表示,数组的大小不是固定的。
一维数组是最简单的数组,其逻辑结构是线性表。一维数组可以用 for 循环出数组中的元素,如下实例:
array = {"Lua", "Tutorial"}
for i= 0, 2 do
print(array[i])
end
以上代码执行输出结果为:
nil
Lua
Tutorial
正如你所看到的,我们可以使用整数索引来访问数组元素,如果知道的索引没有值则返回 nil。
在 Lua 索引值是以 1 为起始,但你也可以指定 0 开始。
除此外我们还可以以负数为数组索引值:
array = {}
for i= -2, 2 do
array[i] = i *2
end
for i = -2,2 do
print(array[i])
end
以上代码执行输出结果为:
-4
-2
0
2
4
多维数组即数组中包含数组或一维数组的索引键对应一个数组。
以下是一个三行三列的阵列多维数组:
-- 初始化数组
array = {}
for i=1,3 do
array[i] = {}
for j=1,3 do
array[i][j] = i*j
end
end
-- 访问数组
for i=1,3 do
for j=1,3 do
print(array[i][j])
end
end
以上代码执行输出结果为:
1
2
3
2
4
6
3
6
9
不同索引键的三行三列阵列多维数组:
-- 初始化数组
array = {}
maxRows = 3
maxColumns = 3
for row=1,maxRows do
for col=1,maxColumns do
array[row*maxColumns +col] = row*col
end
end
-- 访问数组
for row=1,maxRows do
for col=1,maxColumns do
print(array[row*maxColumns +col])
end
end
以上代码执行输出结果为:
1
2
3
2
4
6
3
6
9
正如你所看到的,以上的实例中,数组设定了指定的索引值,这样可以避免出现 nil 值,有利于节省内存空间。
字符串或串(String)是由数字、字母、下划线组成的一串字符。
Lua 语言中字符串可以使用以下三种方式来表示:
以上三种方式的字符串实例如下:
string1 = "Hello"
print("\"字符串 1 是\"", string1)
string2 = 'lua'
print("字符串 2 是", string2)
string3 = [["Lua 教程"]]
print("字符串 3 是", string3)
以上代码执行输出结果为:
"字符串 1 是" Hello
字符串 2 是 lua
字符串 3 是 "Lua 教程"
转义字符用于表示不能直接显示的字符,比如后退键,回车键,等。如在字符串转换双引号可以使用 “"“。
所有的转义字符和所对应的意义:
| 转义字符 | 意义 | ASCII 码值(十进制) |
|---|---|---|
| \a | 响铃(BEL) | 007 |
| \b | 退格(BS) ,将当前位置移到前一列 | 008 |
| \f | 换页(FF),将当前位置移到下页开头 | 012 |
| \n | 换行(LF) ,将当前位置移到下一行开头 | 010 |
| \r | 回车(CR) ,将当前位置移到本行开头 | 013 |
| \t | 水平制表(HT) (跳到下一个 TAB 位置) | 009 |
| \v | 垂直制表(VT) | 011 |
| \ | 代表一个反斜线字符’’' | 092 |
| ' | 代表一个单引号(撇号)字符 | 039 |
| " | 代表一个双引号字符 | 034 |
| 空字符(NULL) | 000 | |
| \ddd | 1 到 3 位八进制数所代表的任意字符 | 三位八进制 |
| \xhh | 1 到 2 位十六进制所代表的任意字符 | 二位十六进制 |
Lua 提供了很多的方法来支持字符串的操作:
字符串大小写转换
以下实例演示了如何对字符串大小写进行转换:
string1 = "Lua";
print(string.upper(string1))
print(string.lower(string1))
以上代码执行结果为:
LUA
lua
字符串查找与反转
以下实例演示了如何对字符串进行查找与反转操作:
string = "Lua Tutorial"
-- 查找字符串
print(string.find(string,"Tutorial"))
reversedString = string.reverse(string)
print("新字符串为",reversedString)
以上代码执行结果为:
5 12
新字符串为 lairotuT auL
字符串格式化
以下实例演示了如何对字符串进行格式化操作:
string1 = "Lua"
string2 = "Tutorial"
number1 = 10
number2 = 20
-- 基本字符串格式化
print(string.format("基本格式化 %s %s",string1,string2))
-- 日期格式化
date = 2; month = 1; year = 2014
print(string.format("日期格式化 %02d/%02d/%03d", date, month, year))
-- 十进制格式化
print(string.format("%.4f",1/3))
以上代码执行结果为:
基本格式化 Lua Tutorial
日期格式化 02/01/2014
0.3333
字符与整数相互转换
以下实例演示了字符与整数相互转换:
-- 字符转换
-- 转换第一个字符
print(string.byte("Lua"))
-- 转换第三个字符
print(string.byte("Lua",3))
-- 转换末尾第一个字符
print(string.byte("Lua",-1))
-- 第二个字符
print(string.byte("Lua",2))
-- 转换末尾第二个字符
print(string.byte("Lua",-2))
-- 整数 ASCII 码转换为字符
print(string.char(97))
以上代码执行结果为:
76
97
97
117
117
a
其他常用函数
以下实例演示了其他字符串操作,如计算字符串长度,字符串连接,字符串复制等:
string1 = "wsdjeg."
string2 = "spacevim"
string3 = ".org"
-- 使用 .. 进行字符串连接
print("连接字符串",string1..string2..string3)
-- 字符串长度
print("字符串长度 ",string.len(string2))
-- 字符串复制 2 次
repeatedString = string.rep(string2,2)
print(repeatedString)
以上代码执行结果为:
连接字符串 wsdjeg.spacevim.org
字符串长度 8
spacevimspacevim
Lua 提供了很多的方法来支持字符串的操作:
字符串全部转为大写字母。
string.upper(argument)
示例:
str1 = "wsdjeg"
print(string.upper(str1))
输出:
WSDJEG
运算符是一个特殊的符号,用于告诉解释器执行特定的数学或逻辑运算。Lua 提供了以下几种运算符类型:
下表列出了 Lua 语言中的常用算术运算符,设定 A 的值为 10,B 的值为 20:
| 操作符 | 描述 | 实例 |
|---|---|---|
+ |
加法 | A + B 输出结果 30 |
- |
减法 | A - B 输出结果 -10 |
* |
乘法 | A * B 输出结果 200 |
/ |
除法 | B / A 输出结果 2 |
% |
取余 | B % A 输出结果 0 |
^ |
乘幂 | A ^ 2 输出结果 100 |
- |
负号 | -A 输出结果 -10 |
实例
我们可以通过以下实例来更加透彻的理解算术运算符的应用:
a = 21
b = 10
c = a + b
print("Line 1 - c 的值为 ", c )
c = a - b
print("Line 2 - c 的值为 ", c )
c = a * b
print("Line 3 - c 的值为 ", c )
c = a / b
print("Line 4 - c 的值为 ", c )
c = a % b
print("Line 5 - c 的值为 ", c )
c = a^2
print("Line 6 - c 的值为 ", c )
c = -a
print("Line 7 - c 的值为 ", c )
以上程序执行结果为:
Line 1 - c 的值为 31
Line 2 - c 的值为 11
Line 3 - c 的值为 210
Line 4 - c 的值为 2.1
Line 5 - c 的值为 1
Line 6 - c 的值为 441
Line 7 - c 的值为 -21
下表列出了 Lua 语言中的常用关系运算符,设定 A 的值为 10,B 的值为 20:
| 操作符 | 描述 | 实例 |
|---|---|---|
| == | 等于,检测两个值是否相等,相等返回 true,否则返回 false | (A == B) 为 false。 |
| ~= | 不等于,检测两个值是否相等,相等返回 false,否则返回 true | (A ~= B) 为 true。 |
| > | 大于,如果左边的值大于右边的值,返回 true,否则返回 false | (A > B) 为 false。 |
| < | 小于,如果左边的值大于右边的值,返回 false,否则返回 true | (A < B) 为 true。 |
| >= | 大于等于,如果左边的值大于等于右边的值,返回 true,否则返回 false | (A >= B) is not true. |
| <= | 小于等于, 如果左边的值小于等于右边的值,返回 true,否则返回 false | (A <= B) is true. |
实例
我们可以通过以下实例来更加透彻的理解关系运算符的应用:
a = 21
b = 10
if( a == b )
then
print("Line 1 - a 等于 b" )
else
print("Line 1 - a 不等于 b" )
end
if( a ~= b )
then
print("Line 2 - a 不等于 b" )
else
print("Line 2 - a 等于 b" )
end
if ( a < b )
then
print("Line 3 - a 小于 b" )
else
print("Line 3 - a 大于等于 b" )
end
if ( a > b )
then
print("Line 4 - a 大于 b" )
else
print("Line 5 - a 小于等于 b" )
end
-- 修改 a 和 b 的值
a = 5
b = 20
if ( a <= b )
then
print("Line 5 - a 小于等于 b" )
end
if ( b >= a )
then
print("Line 6 - b 大于等于 a" )
end
以上程序执行结果为:
Line 1 - a 不等于 b
Line 2 - a 不等于 b
Line 3 - a 大于等于 b
Line 4 - a 大于 b
Line 5 - a 小于等于 b
Line 6 - b 大于等于 a